SK 30 DTA

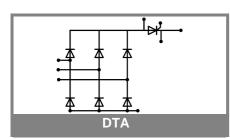
SEMITOP[®] 3

3-phase bridge rectifier+ series thyristor

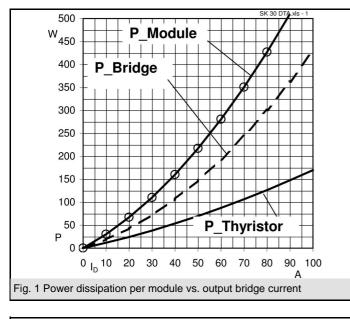
SK 30 DTA

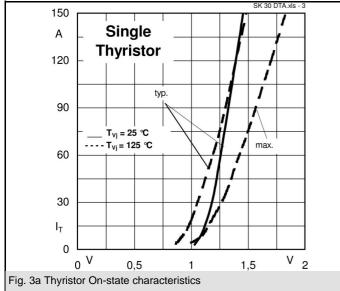
Target Data

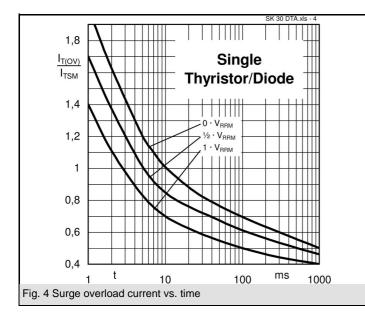
Features

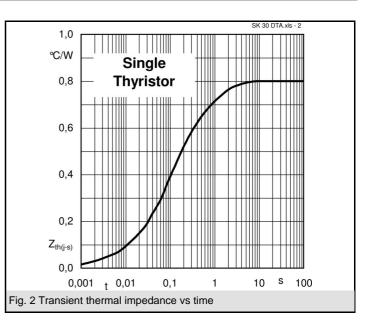

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
- Reverse voltage up to 1600 V
- High surge currents

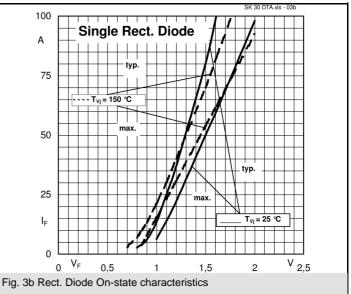
Typical Applications

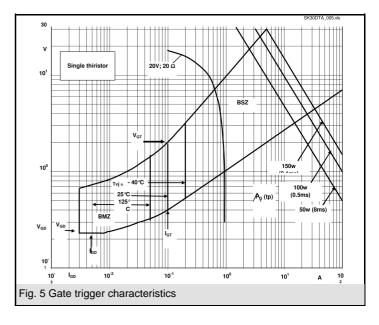

- Soft starters
- Light control
- Temperature control

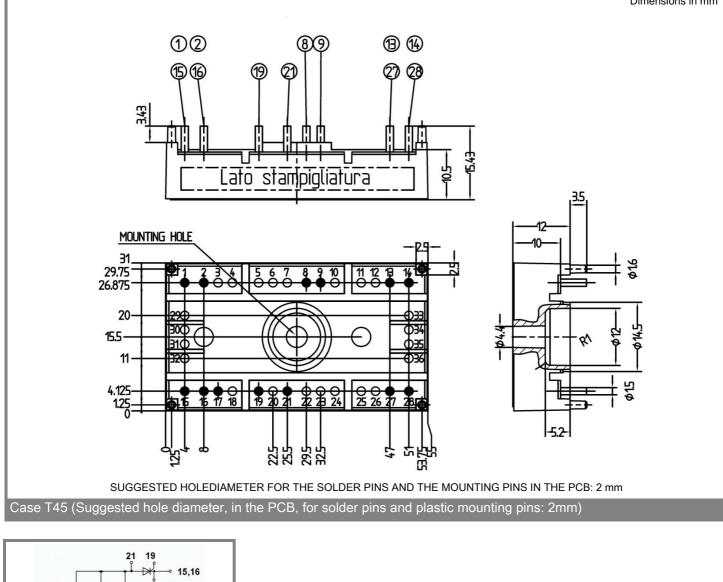

	-	
V _{RSM}	V _{RRM} , V _{DRM}	I _D = 25 A
V	V	(T _s = 80 °C)
900	800	SK 30 DTA 08
1300	1200	SK 30 DTA 12
1700	1600	SK 30 DTA 16

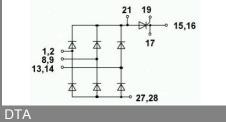

Characteristics		T _s = 25°C unless otherwise specified		
Symbol	Conditions		Values	Units
I _D	T _S = 80°C; Ind. load		25	А
I _{TAV}	sin. 180°; T _s = 25 (80) °C per thyristor		31 (19)	А
I _{FAV}	sin. 180°; T _s = 25 (80) °C per diode		37 (25)	А
I _{TSM} /I _{FSM}	T _{vi} = 25 (125) °C; 10 ms		1000 (900)	Α
l²t	T _{vj} = 25 (125) °C; 8,3 10 ms		5000 (4000)	A²s
T _{stg}			-40,+125	°C
T _{solder}	terminals, 10 s		260	°C
Thyristor				
(dv/dt) _{cr}	T _{vi} = 125 °C		1000	V/µs
(di/dt) _{cr}	T _{vj} = 125 °C; f = f = 50 60 Hz		50	A/µs
t _q	T _{vj} = 125 °C; typ.		80	μs
I _H	T _{vj} = 25 °C; typ. / max.		100 / 200	mA
I _L	$T_{vj} = 25 \text{ °C}; R_G = 33 \Omega; typ. / max.$		200 / 400	mA
V _T	T _{vi} = 25 °C; (I _T = 120 A); max.		1,8	V
V _{T(TO)}	T _{vi} = 125 °C		max. 1	V
r _T	T _{vj} = 125 °C		max. 6	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$		max. 8	mA
R _{th(j-s)}	Cont. per thyristor		0,8	K/W
T _{vj}			- 40 + 125	°C
V _{GT}	T _{vi} = 25 °C; d.c.		2	V
I _{GT}	$T_{vi} = 25 \text{ °C; d.c.}$		100	mA
V _{GD}	T _{vi} = 125 °C; d.c.		0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.		5	mA
Diode				
V _F	T _{vj} = 25 °C; (I _F = 25 A); max.		1,25	V
V _(TO)	T _{vj} = 150 °C		0,8	V
r _T	T _{vj} = 150 °C		4	mΩ
I _{RD}	T _{vj} = 150 °C; V _{RD} = V _{RRM}		4	mA
R _{th(j-s)}	per diode		1,7	K/W
T _{vj}			-40+150	°C
Mechanic	al data			·
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min		3000 (2500)	V
M ₁	mounting torque		2,5	Nm
w			30	g
Case	SEMITOP [®] 3		T 45	




SK 30 DTA







SK 30 DTA

Dimensions in mm

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.